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EXECUTIVE SUMMARY 

Travel-time reliability is a crucial indicator in transportation systems performance 

assessment. Previous studies mostly relied on historical detectors or trajectory data for reliability 

analysis; however, data availability and limited sample size create major obstacles for robust and 

comprehensive assessment. Moreover, such analysis that is only based on historical travel time 

does not allow transportation agencies to assess the effectiveness of new projects and strategies 

in improving reliability of transportation systems. This study fills this gap by presenting a 

framework to model and estimate travel-time reliability using microscopic simulation for 

planning and programming purposes. The framework consists of three major components: 

Scenario Manager, Scenario Processor, and traffic simulation model. The Scenario Manager 

captures exogenous sources of travel-time variability by generating multiple representative 

scenarios composed of various events (e.g. weather, incidents) based on historical records. The 

Scenario Processor then translates scenarios’ attributes into inputs that can be fed into the 

microscopic simulation model and modifies simulation input parameters’ values in real-time. 

The simulation model is further utilized to simulate the generated scenarios and to estimate the 

effects on travel-time reliability of the study corridor. The proposed framework is applied to the 

VISSIM model of a corridor along Interstate 15 in Utah County, Utah. Comparison of simulated 

travel time with observed travel time showed the effectiveness of the proposed framework in 

modeling travel-time reliability. This framework provides a platform for exploring how different 

unreliability sources act individually and in interaction with each other in affecting network-wide 

reliability. 
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1.0 INTRODUCTION 

1.1  Problem Statement 

The growing uncertainty in travel time has become a major concern for both travelers and 

transportation agencies, especially in metropolitan areas. The concept of travel-time reliability 

thus has been considered a critical indicator for highway performance. The Federal Highway 

Administration (FHWA) formally defines travel-time reliability as “the consistency or 

dependability in travel times as measured from day-to-day or across different times of day” 

(FHWA, 2018). While travel-time reliability is a contributing factor in travelers’ decisions, most 

operational and planning models rely on traditional performance measures such as delay and 

average travel time. This highlights the need for studies to investigate the impact of travel-time 

reliability on transportation network planning and traffic operation.  

A myriad of studies have attempted to develop various reliability measures for practical 

use and to estimate perceived value of reliability for incorporating the concept into travel- 

planning models (Carrion and Levinson, 2012; Lomax et al., 2003; Cambridge Systematics, 

2008; Fosgerau and Karlström, 2010; Abrantes and Wardman, 2011; Shires and Jong, 2009; 

Wardman, 2004; Zamparini and Reggiani, 2007; Small et al., 2007). Current practice includes 

using historical detector or trajectory data to calculate various reliability measures. Yet, data 

unavailability and limited sample size create major obstacles for transportation agencies to 

enable robust and comprehensive assessment. As an example, using historical data for non-

recurrent congestion factors that rarely occur or with small sample size is not a viable approach 

to unveil their true impact on travel-time reliability. An alternative approach is to model 

reliability via simulation by generating travel-time distributions and capturing the impacts of 

various sources of travel-time unreliability.  

To provide guidance to travel-time reliability analysis, TRB, AASHTO, and FHWA 

through the Strategic Highway Research Program 2 (SHRP2) launched a series of projects to 

help agencies and researchers better understand reliability, and incorporate the concept into the 

planning, programming and operation processes. Specifically, the SHRP2 L04 project 

“Incorporating Reliability Performance Measures in Operations and Planning Modeling Tools” 
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strived to provide application guidelines for incorporating reliability into simulation models and 

assist agencies to better produce performance measures in order to evaluate how certain projects 

could affect travel-time reliability (Kim et al., 2013).  FHWA also sponsored the SHRP2 

Implementation Assistance Program (IAP), through several rounds of highlighting SHRP2 

products and offering funding, for transportation agencies to implement the SHRP2 tools in their 

projects and operations. 

1.2  Objectives 

Given the growing concerns regarding travel-time reliability, it is important for 

Metropolitan Planning Organizations (MPOs) and Departments of Transportation (DOTs) to 

incorporate it into their planning and operational models for programming assessment. This 

research paves this way by presenting a framework to model travel-time reliability via 

microscopic simulation. The conceptual framework developed by the SHRP2 program is used to 

create different representative scenarios capturing the impact of exogenous factors causing 

travel-time unreliability. A microscopic simulation model is then utilized to simulate the 

generated scenarios and to estimate their impact on reliability. A segment along the Interstate 15 

(I-15) corridor in Utah County, Utah is used as a case study to showcase the applicability of the 

proposed framework. The result of this study creates a suitable tool for the assessment of projects 

and policies that are expected to improve travel-time reliability. 

1.3  Outline of Report 

The rest of the report is structured as follows. We review previous works on travel-time 

reliability analysis. Following upon that, we detail our proposed methodology which takes 

advantage of an SHRP2 product (Scenario Manager) and a new product developed by this study 

using neural network - Scenario Processor - to investigate the impact of weather and crash events 

on travel-time reliability. The result using a case study along the I-15 corridor is presented 

afterwards. We conclude with a discussion of the results and limitations of the proposed 

methodology. 
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2.0  LITERATURE REVIEW 

2.1  Overview 

This chapter presents the summary of previous studies on travel-time reliability measures 

and analysis methods.  

2.2 Reliability Measures  

Travel-time reliability quantifies the temporal uncertainty experienced by different 

travelers in their trips from one node to another within a traffic network. It could affect travel 

decisions regarding departure time, route choice, and mode choice that each traveler makes 

during his or her trip (Wang et al., 2014). Previous studies used various measures to quantify the 

variability in travel times across different time periods. The FHWA Office of Operations listed 

five standard measures of travel-time reliability as detailed below: 

• 90th or 95th percentile travel time: the amount of experienced delay on heavily 

congested days; 

• Travel-time index: the ratio of the mean experienced travel time to the free-flow 

travel time;  

• Buffer index: Extra time allocated to ensure travel is on time most of the time, 

computed as the difference between 95th percentile travel time and mean travel time, 

divided by mean travel time; 

• Planning time index: total time needed to plan for an on-time arrival 95% of the time, 

computed as 95
th

 percentile travel time divided by free-flow travel time; 

• Frequency that congestion exceeds a certain expected threshold: percentage of days 

or time that mean speed falls below a certain speed (Chen et al., 2016; Chen et al., 

2019; Haghighi et al., 2019)  

 

Travel-time variability results from a myriad of factors that affect both supply and 

demand sides of transportation systems. SHRP2 and FHWA recognize seven sources of travel- 

time variability including traffic incidents, work zones, weather, special events, traffic control 

devices, fluctuations in demand, and inadequate base capacity (FHWA, 2018). Several studies 
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have attempted to quantify travel-time reliability and its spatial and temporal variations using 

historical data directly obtained from probe vehicles, continuous point-based detectors or 

collected in periodic studies (Emam and Al-Deek, 2006; Chen et al., 2003; Recker et al., 2006; 

Lyman and Bertini, 2008; Chen et al., 2019). For example, Emam and Al-Deek (2006) used 

dual-loop detector data to estimate travel-time distribution on a section of Interstate 4 in Orlando, 

Florida. Four different statistical distributions including Weibull, exponential, lognormal, and 

normal were examined to identify the best one that can fit to the travel time. Chen et al. (2003) 

evaluated the incidents’ effects on various travel-time statistics including  median, mean, 10th 

percentile, and 90th percentile travel times using real-world data collected on a corridor along 

Interstate 5 in Los Angeles, California. They also compared mean and standard deviation of 

travel times under different levels of service and found that worse levels of service are associated 

with greater travel-time unreliability. 

2.3 Travel-Time Reliability Analysis Methods  

Using historical trajectory data is the easiest and the most ideal way to estimate travel- 

time distribution. However, most of the time this is not possible due to the unavailability of data 

or insufficiency of sample size. It is also difficult to explore how various unreliability sources act 

individually and/or in interaction with each other in determining network reliability.  Moreover, 

historical data analysis does not allow transportation agencies to directly assess the effectiveness 

of new projects and strategies in improving reliability of transportation systems. An alternative 

approach is to generate unreliability scenarios based on historical data and resort to traffic 

simulation models to produce travel-time reliability measures under various conditions. Kim et 

al. (2013) used a mesoscopic traffic simulation tool, DYNASMART-P, to examine the impact of 

weather and incidents on travel-time variability. They developed a framework that features three 

components: Scenario Manager, traffic simulation models, and Trajectory Processor. Scenario 

Manager populates scenarios to capture exogenous sources of travel uncertainty. The generated 

scenarios were then modeled in a mesoscopic traffic simulation model to produce vehicle 

trajectories. The resulting vehicle trajectories were further processed in Trajectory Processor to 

produce various measures of travel-time reliability. The proposed framework was applied to a 

real-world network to investigate the impact of weather and incidents on travel-time reliability. 
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While Kim et al. provided valuable insights on how to integrate reliability into planning models, 

it is not clear how various weather and incident events were modeled in the DYNASMART-P 

environment (i.e. more like a black box). Moreover, there is a need for studies that can provide 

guidance for integrating reliability measures into microscopic traffic simulation models that 

mainly work based on car-following and lane-changing theories. 
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3.0  RESEARCH METHODS 

3.1 Overview 

Built upon the SHRP2 L04 project, this chapter describes a framework we developed to 

model and estimate travel-time reliability using microscopic simulation. The proposed 

framework consists of three major components: Scenario Manager, Scenario Processor, and a 

microscopic simulation model. Fig. 1 illustrates the framework scheme. The primary objective of 

the Scenario Manager is to generate scenarios that can capture exogenous sources of travel-time 

variability. These scenarios represent any mutually consistent combinations of demand- and 

supply-sides random factors. The Scenario Processor then translates and incorporates scenarios’ 

attributes to inputs that can be fed into the microscopic simulation model. During simulation, the 

traffic simulation model captures endogenous sources of travel-time variability such as 

heterogeneous driving behaviors. The resulting travel times are then processed to obtain travel- 

time distribution and other measures of travel-time reliability.    

Note that the two major functions of the Scenario Processor the research team developed 

include modeling crash events and modeling weather events in the VISSIM environment. The 

crash events are populated based on historical records collected along the I-15 study corridor in 

Utah County for the entire year of 2017 and described by start time, end time, latitude, and 

longitude. Generated crashes were mapped onto the VISSIM network model by determining the 

link and coordinates of each crash. Weather impact is modeled through modified traffic flow 

characteristics, where the loop detector and Road Weather Information System (RWIS) data are 

jointly collected along I-15 in Salt Lake County to capture the heterogeneity in traffic flow 

patterns.  
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Figure 1. Framework scheme. 

3.2 Scenario Manager  

Scenario Manager provides an environment for scenario-based reliability analysis by 

generating scenarios to capture exogenous sources of travel-time variability. One of the main 

issues in generating scenarios is capturing dependencies in certain scenario components. For 

example, weather condition can significantly affect the frequency and severity of crashes and 

such dependency needs to be addressed in the scenario generation process. Scenario Manager 

takes these dependencies into account by following a generation order to allow components that 

affect others to be generated first. For instance, it first generates weather scenarios and then 

incidents are sampled from incident distribution on top of the weather condition of the given 

scenario. 
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The main objective of scenario-based reliability analysis is to assess variability in the 

resulting travel-time distribution by controlling input parameters. Scenario Manager utilizes a 

built-in Monte Carlo sampling function to generate hypothetical scenarios for analysis and 

design purposes. Each scenario is composed of a sequence of event instances. The event instance 

is the smallest unit in the scenario structure and contains information about start and end times, 

location, and intensity. Let 𝑆 denote each input scenario for the microsimulation model and  𝑋 an 

event instance that represents a supply- or demand-side random factor such as weather, incident, 

special event, work zone, or day-to-day demand variation. Scenario 𝑆 is characterized by a 

sequence of event instances: 

𝑆 = {𝑋1, 𝑋2, … , 𝑋𝐽}            𝑗 = 1, 2, … , 𝐽 (1) 

 

where each event instance 𝑋𝑗 is a vector of various attributes describing temporal, spatial, and 

intensity properties of an event instance for a given factor. Distribution of travel times for each 

scenario can be obtained as follows: 

𝑇𝑖 = 𝑔(𝑁𝑁(𝑆𝑖))                    𝑖 = 1, 2, … , 𝑁  (2) 

where 𝑇𝑖 is a set of travel times for a given path link generated using traffic simulation under the 

conditions of 𝑖th scenario 𝑆𝑖, 𝑔(𝑥) represents the given traffic simulation model, and 𝑁𝑁(𝑥) 

represents the function developed under Scenario Processor which translates scenario 

components to the inputs required for VISSIM.  

3.3 Scenario Processor  

Since most simulation models such as VISSIM do not provide the ability to directly 

model certain scenario components such as weather and incident events, we developed a 

Scenario Processor to translate scenario attributes to the VISSIM inputs. The Scenario Processor 

includes a COM script (see the Appendix) written in MATLAB which is designed to 

automatically incorporate each scenario’s events into the simulation environment by modifying 

VISSIM input parameters. The two major functions of the Scenario Processor include modeling 

crash events and modeling weather events in the VISSIM environment, and are detailed in the 

following sections.  



 

10 

3.3.1 Modeling Crash Events  

To generate crash events, 2017 crash data were obtained from the Utah Department of 

Transportation (UDOT) and fed into the Scenario Manager. The crash data include crash start 

time, end time, latitude, longitude, and crash description for the entire year of 2017. Using such 

dataset, Scenario Manager populated crash events according to their temporal and spatial 

distributions. The populated scenarios thus include crash events for the I-15 study corridor in 

Utah County described by start time, end time, latitude, and longitude. Generated crashes were 

mapped onto the VISSIM network model by determining the link and coordinates of each crash. 

To model each crash in the VISSIM environment, a traffic signal is placed at the location of the 

crash and set to red light from a crash start time to its end time to “block” the traffic on a specific 

lane. After crash end time, the traffic signal would be set back to green again to allow traffic to 

proceed which represents the condition that the crash is cleared from the roadway. 

 

3.3.2 Modeling Weather Events 

Scenario Processor models various weather conditions by modifying a series of VISSIM 

input parameters. It first determines the impact of different weather conditions on traffic flow 

parameters (i.e., free-flow speed, speed at capacity, and jam density) using traffic data collected 

from loop detectors on the study corridor. Then it calibrates VISSIM input parameters based on a 

certain weather event to generate a simulated traffic stream that has consistent characteristics 

with the observed traffic stream under each specified weather condition.  

 

3.3.2.1 Estimate traffic-flow characteristics 

To investigate the impact of various weather conditions on traffic-flow characteristics, 

2017 traffic and weather data were collected on I-15 during the PM peak period of 4:00-6:00 

PM. The collected traffic data include 5-min speed, flow, and occupancy obtained from inductive 

loop detectors along I-15 in Salt Lake County. Weather data are retrieved from two different 

sources: RWIS operated by UDOT and Automated Surface Observing System (ASOS) operated 

by National Weather Service (NWS). RWIS hosts environmental sensors installed on the 

roadside or in the roadway that collect real-time local atmospheric and pavement conditions 

(Kwon and Fu, 2013). ASOS is a primary climatological observing network in the United States 
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designed to support weather forecast and aviation operations.  Most ASOS stations are located 

near airports and do not provide road surface condition data. The closest ASOS station in the 

study area is located in Salt Lake City International Airport which is several miles away from the 

study corridor. Due to the proximity of RWIS stations to the study corridor and also their 

availability of road-surface condition data, RWIS data were used for the analysis. RWIS data 

includes 10-min air temperature, road temperature, wind speed, visibility, precipitation intensity, 

and pavement condition data. Weather condition is reported by precipitation intensity (i.e., Light 

Precipitation, Moderate Precipitation, and Heavy Precipitation), but the accuracy of the reported 

intensity level is questionable. Moreover, visibility readings are missing for most of the RWIS 

stations. Consequently, the research team chose to only use pavement condition data for this 

study.     

To link traffic data with weather data, we extracted data from loop detectors that are 

located within a 2-mile radius of RWIS stations. For each loop detector, 5-min traffic data were 

collected and were labeled to 10-min weather data obtained from the closest RWIS station. Fig. 

2 shows loop detectors and RWIS stations selected for data collection. Three weather categories 

including clear with dry pavement, rain with wet pavement, and snow with snowy or slushy 

pavements were considered for this study.    



 

12 

 

Figure 2. Selected RWIS stations and loop detectors selected for data collection along I-15 

corridor in Salt Lake County. 

 

Traffic data under each weather category were extracted and key traffic flow 

characteristics (i.e., free-flow speed, speed at capacity, jam density, and capacity) were then 

estimated by fitting the Van Aerde’s traffic flow model to the observed data under that weather 

category.  Equations 3 through 6 show the functional form of the Van Aerde model.  

𝑘 =
1

𝑐1 +
𝑐2

𝑢𝑓 − 𝑢 + 𝑐3𝑢
 (3) 

𝑐1 =
𝑢𝑓

𝑘𝑗𝑢𝑐
2

(2𝑢𝑐 − 𝑢𝑓) (4) 
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𝑐2 =
𝑢𝑓

𝑘𝑗𝑢𝑐
2

(𝑢𝑓 − 𝑢𝑐)
2
 (5) 

𝑐3 =
1

𝑞𝑐
−

𝑢𝑓

𝑘𝑗𝑢𝑐
2
 (6) 

where 𝑘, 𝑢, 𝑢𝑓, 𝑢𝑐, 𝑞𝑐, and 𝑘𝑗 denote traffic flow density, traffic flow space-mean speed, free-

flow speed, speed at capacity, and capacity, respectively. Interested readers can refer to Van 

Aerde and Rakha (1995), Rakha and Crowther (2002), and Rakha (2005) for more detail on the 

model. 

A heuristic algorithm (SPD_CAL) developed by Rakha et al. (2008) was then 

implemented to fit Van Aerde’s model in a three-dimensional (speed-flow-density) space. Fig. 3 

illustrates fitted traffic flow models under different weather categories. 
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Figure 3. Van Aerde model fitted to observed traffic data under defined weather 

categories. 
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3.3.2.2 Determine VISSIM input parameter values 

To translate the estimated traffic flow characteristics into VISSIM input parameters, a 

neural network model developed by Golshan Khavas et al. (2017) is used. This neural network 

predicts appropriate driving behavior parameters that can generate traffic stream with desirable 

characteristics (e.g., specific capacity, free-flow speed, and jam density). The model requires 

free-flow speed, speed at capacity, capacity, and jam density as inputs and provides values for 

nine VISSIM behavior parameters (i.e. Accepted Deceleration Own, Accepted Deceleration 

Trail, Safety Distance Reduction Factor, Standstill Distance (CC0), Headway Time (CC1), 

Negative Following Threshold (CC4), Positive Following Threshold (CC5), Oscillation 

Acceleration (CC7), and Acceleration at 80 km/h (CC9)). These nine behavior parameters were 

identified from previous studies to have the greatest impact on the output of the traffic simulation 

model, and properly selected values can produce traffic flow characteristics that are consistent 

with field observations (Ge and Menendez, 2012; Gomes et al., 2004; Park and Qi, 2006; 

Lownes and Machemehl, 2006). The neural network model was trained on 225,000 simulations 

conducted on a hypothetical network with different combinations of these nine parameters.  

Key traffic flow characteristics (i.e., free-flow speed, speed at capacity, jam density, and 

capacity) under rain and snow weather conditions were used as input to the trained neural 

network, and appropriate driving behavior parameters and desired speed distributions were 

predicted. Among predicted parameters, CC0 and CC1 in the car-following model are most 

commonly calibrated in previous studies since they are more influential to the roadway capacity 

and other traffic flow characteristics (Gomes et al., 2004; Lownes and Machemehl, 2006; Ge and 

Menendez, 2012). Other parameters have marginal impact on traffic flow characteristics. 

Consequently, only CC0, CC1, and desired speed distributions were modified to generate 

desirable flow under rain or snow conditions. To simulate scenarios with rain or snow weather 

events, modifications were made to the base-model driving-behavior parameters specifically on 

CC0, CC1, and desired speed distributions. Table 1 shows some of the input parameters used for 

simulating various weather events.    
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Table 1. VISSIM input parameters used for simulating each weather category. 

Weather 

Category 

Precipitation 

Type 

Pavement 

Condition 
CC0  CC1 CC4 CC5 CC7 CC9 

Clear (base) None Dry 14.42 1.2 -0.7 0.7 0.82 4.92 

Rain Rain Wet 16 1.7 -0.7 0.7 0.82 4.92 

Snow Snow Snowy/Slushy 17 2.5 -0.7 0.7 0.82 4.92 

 

3.4 Microscopic Simulation Model 

The proposed framework is applied to a VISSIM model of a segment along the I-15 

corridor in Utah County, Utah. Fig. 4 shows the selected corridor boundaries. The model 

includes mainline I-15, the interchanges of 1600 North/I-15 (Exit 273), Pleasant Grove Blvd./I-

15 (Exit 275), 500 East/I-15 (Exit 276), and American Fork Main St. (Exit 278). The model is 

created in VISSIM version 10.00-05 and is calibrated for the base scenario (i.e., clear weather 

which includes neither weather events nor crash events), a weekday PM peak period (4:00-6:00 

PM) using 2017 traffic data. The calibration procedure includes modifying driving behavior 

parameters to obtain the best match between observed and simulated saturation flow rates, major 

movements hourly flow, average corridor travel time, and queue length. Table 2 illustrates the 

difference between the simulated and the observed traffic volumes. A modified Chi-Squared 

statistic test, GEH statistic was used to compare two sets of traffic volumes. Equation 7 shows 

the formulation of GEH statistics. 

𝐺𝐸𝐻 = √
2(𝑀 − 𝐶)2

(𝑀 + 𝐶)
 (7) 

 

where 𝑀 is the simulated hourly traffic volume and C is the observed hourly traffic count. 

𝐺𝐸𝐻 < 5 is considered a good fit for this model (Dowling et al., 2004). 
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Table 2. I-15 PM Peak simulated and observed traffic volumes 

D
ir

ec
ti

o
n
 

Segment PM Peak  

From To 
Model 

Volume 

Field 

Volume 

Difference 

(%) 

GEH 

Factor 

N
o
rt

h
b

o
u

n
d
 

1600 North Off-

ramp 

1600 North On-

ramp 
7834 7828 0.1 0.07 

1600 North On-

ramp 

Pleasant Grove 

Blvd. Off-ramp 
8952 8999 0.5 0.50 

Pleasant Grove 

Blvd. Off-ramp 

Pleasant Grove 

Blvd. On-ramp 
8019 7995 0.3 0.27 

Pleasant Grove 

Blvd. On-ramp 
500 East Off-ramp 9313 9333 0.2 0.21 

500 East Off-ramp 500 East On-ramp 8381 8368 0.2 0.14 

500 East On-ramp 
Pioneer Crossing 

Off-ramp 
9404 9459 0.6 0.57 

Pioneer Crossing 

Off-ramp 

Pioneer Crossing 

On-ramp 
6919 6887 0.5 0.39 

Pioneer Crossing 

On-ramp 

Lehi Main St. Off-

ramp 
7479 7480 0.0 0.01 

S
o
u
th

b
o
u
n
d
 

Pioneer Crossing 

Off-ramp 

Pioneer Crossing 

On-ramp 
6606 6577 0.4 0.36 

Pioneer Crossing 

On-ramp 
500 East Off-ramp 8143 8119 0.3 0.27 

500 East Off-ramp 500 East On-ramp 7683 7594 1.2 1.02 

500 East On-ramp 
Pleasant Grove 

Blvd. Off-ramp 
8714 8647 0.8 0.72 

Pleasant Grove 

Blvd. Off-ramp 

Pleasant Grove 

Blvd. On-ramp 
7759 7624 1.8 1.54 

Pleasant Grove 

Blvd. On-ramp 

1600 North Off-

ramp 
9148 9047 1.1 1.06 

1600 North Off-

ramp 

1600 North On-

ramp 
8239 8062 2.2 1.96 

 

Table 3 shows the average travel times for three different study segments along the study 

corridor. Simulated average travel times were compared to observed average travel times 

obtained from UDOT’s HERE data – aggregated from probe sample that is good for speed and 

travel-time estimates (https://udot3p.iteris-pems.com/). For this model, the following criteria on 

travel times were used for the calibration procedure. As shown in Table 3, the criteria for travel 

times are met. 

https://udot3p.iteris-pems.com/
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 Average corridor travel times need to fall within ±15% of the observed travel times for 

more than 85% of the cases 

 Average corridor travel times need to fall within ±30 seconds of the observed travel 

times for more than 85% of the cases 

Table 3. I-15 simulated travel times compared to observed travel times 

D
ir

ec
ti

o
n
 

Segment Distance Hour 

Simulated 

Travel 

Time 

Observed 

Travel 

Time 

Difference 

(%) 

<30 sec 

Difference 

Corridor 

N
o
rt

h
b
o
u
n

d
 

1600 North to Pleasant 

Grove Blvd 
14203 

4:00-

5:00 

PM 

139.74 137 2.0 

Y 
Pleasant Grove Blvd to 

500 East 
5333 53.5 51.5 3.9 

500 East to Pioneer 

Crossing 
10982 110.9 106.1 4.5 

1600 North to Pleasant 

Grove Blvd 
14203 

5:00-

6:00 

PM 

141.7 145.3 2.5 

Y 
Pleasant Grove Blvd to 

500 East 
5333 58.19 58.9 1.2 

500 East to Pioneer 

Crossing 
10982 136.44 131.3 3.9 

S
o
u
th

b
o
u
n
d
 

Pioneer Crossing to 500 

East 
10983 

4:00-

5:00 

PM 

108.32 106 2.2 

Y 
500 East to Pleasant 

Grove Blvd 
4752 46.38 46.5 0.3 

Pleasant Grove Blvd to 

1600 North 
13570 137.58 133.5 3.1 

Pioneer Crossing to 500 

East 
10983 

5:00-

6:00 

PM 

108.73 106.8 1.8 

Y 
500 East to Pleasant 

Grove Blvd 
4572 46.6 48.5 3.9 

Pleasant Grove Blvd to 

1600 North 
13570 138.4 144.6 4.3 

 

 For the purpose of this study, we focus on assessing travel-time reliability along a 

segment on I-15 northbound from 1600 North to Pioneer Crossing/American Fork Main Street 

during a weekday-evening peak period in winter. The trip distance and free-flow travel time 

along this section of I-15 are 5.8 miles and 4.6 minutes, respectively. Inclement weather and 

crash events were considered as the major sources of travel-time uncertainty.  
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Figure 4. Study area. 

1600 North 

Pleasant Grove Blvd 

500 East 

Pioneer Crossing 
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4.0  RESULTS 

4.1 Overview 

The proposed methods are applied to the VISSIM simulation model described in Section 

3.4. The following presents the travel-time reliability results generated from the simulation 

model.  

4.2 Reliability Simulation Results and Analysis  

Using the Scenario Manager, forty scenarios including rain with possible crash events 

(Rain Scenarios) and forty scenarios including snow with possible crash events (Snow Scenarios) 

were generated for the study corridor and compared with the base scenario (i.e., clear weather 

which includes neither weather events nor crash events). Generated scenarios differentiate from 

each other by precipitation type, duration, and crash occurrence. Fig. 5 shows the distribution of 

precipitation duration across generated scenarios. Scenario Processor was then utilized to 

automatically translate the generated scenarios into appropriate driving behavior parameters that 

can be fed into VISSIM. Each scenario was simulated using five different random seeds, and 

vehicle travel times under rain and snow scenarios were obtained for the study corridor (I-15 

Northbound between 1600 North and Pioneer Crossing interchanges). Fig. 6 illustrates 

distributions of travel times under the conditions of generated scenarios for the mainline I-15 

Northbound between 1600 North and Pioneer Crossing interchanges. As shown in Fig. 6, 

dispersion in travel-time distributions increase as the weather condition degrades from clear to 

snow. Highest dispersion is observed under snow condition. 
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Figure 5. Distribution of precipitation duration across generated scenarios. 
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(a) 

 

(b) 

 

(c) 

Figure 6. Scenario-specific travel-time distributions: (a) clear, (b) rain, and (c) snow. 

 

Table 4 summarizes various reliability performance measures calculated based on travel-

time distributions. Mean, median, and standard deviation of travel time increase as the weather 

condition changes from clear to snow. Higher dispersion of travel-time distributions explain the 
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greater standard deviation for rain and snow conditions. These findings are consistent with 

previous studies showing more cautious driving behavior during inclement weather conditions.  

Comparing travel-time quantiles across different weather conditions revealed that they 

approximately follow the same trends from clear to snow weather conditions, although more 

noticeable differences exist between higher percentiles. Significant changes can also be observed 

in the planning time index, which is the 95
th

 percentile travel time divided by the free-flow travel 

time.  Comparison of three travel-time reliability indices approved by FHWA – buffer index, 

travel-time index, and planning-time index – showed that they approximately follow the same 

trend along the corridor. The buffer index might be a relatively conservative measure to use for 

reliability analysis.     

Table 4. Simulation results and travel-time reliability measures 

Weather Condition  Clear (base) Rain Snow 

Distance (mi) 5.78 5.78 5.78 

Number of simulated scenarios 1 40 40 

Number of observed vehicles 53905 2172012 2157860 

Mean travel time (s) 315 321 358 

Median travel time (s) 307 310 338 

95th percentile (s) 376 402 476 

Standard deviation (s) 29 41 79 

Buffer index (s) 0.19 0.25 0.33 

Planning-time index 1.25 1.32 1.45 

Travel-time index 1.05 1.06 1.09 

 

Fig. 7 illustrates mean and standard deviation (error bars depict plus and minus one 

standard deviation) of travel time along the study corridor under different weather conditions. 

Travel time and its standard deviation across the corridor vary significantly throughout the PM 

peak period. Under clear weather condition, both mean and standard deviation of travel time 

spiked highest around 17:40 probably because of higher demand at the end of peak period. Rain 
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and snow conditions increased the mean travel time at 5-min intervals up to 8% and 25%, 

respectively. 

 

Figure 7. Mean travel time along the study corridor. 

 

Approximately the same trends of mean travel time and its standard deviation throughout 

the peak period can be observed under different weather conditions. However, the difference 

between travel times under three weather conditions will be amplified at the end of the peak 

period where recurrent congestion occurs on the corridor. The underlying reason is that in the 

beginning of the peak period where the corridor is experiencing free-flow condition, desired 

speed distributions mainly cause travel-time differences but when congestion occurs, modified 

driving behavior parameters (standstill distance and headway time) come into play and induce 

considerable changes in travel time. Fig. 8 shows the buffer index, travel-time index, and 

planning-time index estimated for the study corridor over the PM peak period. Buffer index 

helps travelers to estimate how much extra time needs to be allocated to account for uncertainty 

in travel conditions. Under snowy scenarios, the maximum buffer index is approximately 0.5, so 

for average travel time of 7.2 minutes, buffer time equals 3.6 minutes. Consequently, under the 

worst congestion condition, travelers should allow 10.8 minutes (as opposed to 7.2 minutes 

under clear weather) for a normal trip under snowy weather along this corridor to ensure on-time 

arrival with 95% certainty. The planning-time index reports the time needed for an on-time 

arrival 95% of the time. The maximum planning-time index is approximately 1.9 under snowy 
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condition and free-flow travel time equals 5.5 minutes, meaning that under the worst congestion 

condition, an individual needs to plan 10.4 minutes to ensure on-time arrival with 95% certainty. 

Approximately similar trends are observed for the three indices. However, the planning-time 

index seems to exaggerate the trend more than the other two. The buffer index is found to be the 

most conservative index to measure travel-time reliability.  
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(a) 

 

(b)

 

(c) 

Figure 8. Travel-time reliability indices for the study corridor: (a) clear, (b) rain, and (c) 

snow. 
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To validate simulation results, probe vehicle data were used to estimate observed travel-

time distributions. HERE travel-time data for 2017 along the study corridor were collected and 

linked to the closest RWIS station. Data include 2666, 148, and 13 travel-time observations at 

10-min granularity under clear, rain, and snow weather conditions, respectively (iPeMS, 2018). 

Travel-time distributions under clear, rain, and snow weather conditions were estimated and 

compared with the simulated distributions. Fig. 9 illustrates the distributions of travel times 

under different weather conditions estimated based on simulated and observed data. Note that the 

simulated data are extracted from every vehicle’s trajectory for the base scenario (representing 

clear weather condition), 40 raining scenarios, and 40 snowy scenarios, respectively. Observed 

data are obtained from HERE for clear, rain and snowy conditions, separately. Comparison of 

simulated distributions with observed ones revealed that the trends of simulated distributions 

under clear and rain conditions are consistent with the observed ones. Inconsistency between 

simulated and observed distributions was noticed for snowy weather condition. This 

inconsistency might be explained with the small sample size of observed travel-time data (only 

13 travel-time observations in 2017) under snowy condition. This example of travel-time 

distribution under snowy condition shows that for non-recurrent congestion events that rarely 

occur or with limited sample size, modeling travel-time reliability via simulation is a viable 

approach to unveil its impacts. 
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Figure 9. Comparison of simulated travel-time distributions with observed distributions. 

 

To further compare the simulated results with observed data, simulated mean travel time 

throughout the PM peak period is compared with the observed mean travel time under rain 

condition (see Fig. 10). Results reveal that considering non-recurrent factors in simulation can 

increase the accuracy of mean travel-time estimation over the peak period. Considering the 

impact of other non-recurrent factors such as special events, work zones, and travel-demand 

variation might improve the accuracy of travel-time estimations.  
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Figure 10. Comparison of simulated mean travel time with observed mean travel time 

under rain condition. 

 

Fig. 11 illustrates the buffer index comparison of three sub-segments along the study 

corridor during the PM peak period. The figure shows how buffer index varies under each 

weather condition for each segment. For all, buffer index and its standard deviation increase 

when weather condition degrades from clear to snow condition. Moreover, while there is no 

significant difference between segments’ buffer indices under clear weather, inclement weather 

and incident events magnify the difference. The segment between Pleasant Grove Blvd and 500 

E has the highest buffer index under rain and snow conditions. This might be explained by the 

proximity of two interchanges causing weaving movements along this short segment and also 

more cautious driving behaviors under inclement weather conditions. This finding shows the 

importance of integrating reliability measures into traffic operation models. The proposed 

framework can help DOTs and other transportation agencies to pinpoint segments with poor 

performance and in the next step, assess effectiveness of various strategies such as modifying 

ramp meter timing for improving the performance of the study segment. 
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Figure 11. Buffer index comparison of three segments along the study corridor during p.m. 

peak period.  
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5.0  CONCLUSIONS 

5.1  Summary 

Travel-time reliability has been identified as an important factor impacting travel 

behaviors and subsequently traffic operation. Review of previous studies revealed that these 

studies mostly relied on historical detectors or trajectory data for reliability analysis; however, 

data availability and limited sample size create major obstacles for robust and comprehensive 

assessment. Moreover, reliability analysis only based on historical travel time does not allow 

transportation agencies to assess the effectiveness of new projects and strategies in improving 

reliability of transportation systems. An alternative approach is to model reliability via 

simulation by generating travel-time distributions and capturing the impacts of various sources of 

travel-time unreliability. Many DOTs and other transportation agencies have not yet begun or are 

only at the initial phase to integrate reliability as a performance measure into planning and 

operation models. This research paved the way by presenting a framework to model travel-time 

reliability via microscopic simulation. 

Using a corridor along Interstate 15 in Utah County, Utah, as a case study, we showcased 

the effectiveness of the proposed framework for freeway reliability analysis. The Scenario 

Manager was utilized to capture exogenous sources of travel-time variability by generating 

scenarios based on historical data. The Scenario Processor was then used to translate scenarios’ 

attributes to inputs that can be fed into the microscopic traffic simulation model. Generated 

scenarios were then simulated in VISSIM, and individual vehicle travel times were collected as 

output of the microsimulation model. The distributions of travel times were constructed and 

compared with observed distributions to investigate the performance of the proposed framework 

in capturing the impacts of non-recurrent congestion factors on travel-time reliability. Results 

revealed the viability of the proposed framework for unveiling the impact of non-recurrent 

congestion events that rarely occur on travel-time reliability. Lastly, we compared the 

performance of three segments along the study corridor from the reliability perspective to show 

how transportation agencies can potentially use the proposed framework to determine freeway 

segments with the highest need for reliability improvements. The proposed framework developed 

a suitable tool for evaluation of projects and strategies that can improve reliability measures. 
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This framework also provides a platform for exploring the individual and combined effects of 

different unreliability sources on network-wide reliability. 

5.2  Future Work 

While we only focused on the impact of weather and crash events in this application, 

there are other factors that would affect travel-time variability, such as work zone, special events, 

and travel-demand variations. The proposed framework has the flexibility to model any other 

event that can be characterized by start time, end time, and intensity. Consequently, modeling the 

impact of special events, work zone, demand fluctuation, and flow breakdown are some of the 

potential extensions of this study. 
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APPENDIX 

This appendix includes a COM script written in MATLAB which is designed to 

automatically incorporate each scenario’s events (in Scenario Processor) into the simulation 

environment by modifying VISSIM input parameters. The two major functions of the Scenario 

Processor include modeling crashes and modeling various weather conditions in the VISSIM 

model. The detailed modeling approach is described in Section 3.0 of the report.  

clc 

clear 

%% Import data from text file. 

% Script for importing data from the following text file: 

% 

%    C:\Users\Nima\Desktop\Sharp2\current 

test\SHRP2_L04_ScenarioManagerUsersGuideAndSoftware\SHRP2_L04_ScenarioManager

UsersGuideAndSoftware\slc net\2017_scenarios_rain.csv 

% 

% To extend the code to different selected data or a different text file, 

% generate a function instead of a script. 

  

% Auto-generated by MATLAB on 2018/07/14 11:20:59 

  

%% Initialize variables. 

filename ='C:\Users\Nima\Desktop\Sharp2\current 

test\SHRP2_L04_ScenarioManagerUsersGuideAndSoftware\SHRP2_L04_ScenarioManager

UsersGuideAndSoftware\new scenarios\rain_scen.csv' ; 

  

%'C:\Users\Nima\Desktop\Sharp2\current 

test\SHRP2_L04_ScenarioManagerUsersGuideAndSoftware\SHRP2_L04_ScenarioManager

UsersGuideAndSoftware\slc net\2017_scenarios_rain.csv' 

delimiter = ','; 

startRow = 2; 

  

%% Read columns of data as strings: 

% For more information, see the TEXTSCAN documentation. 

formatSpec = '%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%[^\n\r]'; 
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%% Open the text file. 

fileID = fopen(filename,'r'); 

  

%% Read columns of data according to format string. 

% This call is based on the structure of the file used to generate this 

% code. If an error occurs for a different file, try regenerating the code 

% from the Import Tool. 

dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 

'HeaderLines' ,startRow-1, 'ReturnOnError', false); 

  

%% Close the text file. 

fclose(fileID); 

  

%% Convert the contents of columns containing numeric strings to numbers. 

% Replace non-numeric strings with NaN. 

raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 

for col=1:length(dataArray)-1 

  raw(1:length(dataArray{col}),col) = dataArray{col}; 

end 

numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 

  

for col=[1,2,3,10,11,12,14,15,17,19] 

  % Converts strings in the input cell array to numbers. Replaced non-numeric 

  % strings with NaN. 

  rawData = dataArray{col}; 

  for row=1:size(rawData, 1); 

    % Create a regular expression to detect and remove non-numeric prefixes 

and 

    % suffixes. 

    regexstr = '(?<prefix>.*?)(?<numbers>([-

]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-

]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)'; 

    try 

      result = regexp(rawData{row}, regexstr, 'names'); 

      numbers = result.numbers; 
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      % Detected commas in non-thousand locations. 

      invalidThousandsSeparator = false; 

      if any(numbers==','); 

        thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$'; 

        if isempty(regexp(thousandsRegExp, ',', 'once')); 

          numbers = NaN; 

          invalidThousandsSeparator = true; 

        end 

      end 

      % Convert numeric strings to numbers. 

      if ~invalidThousandsSeparator; 

        numbers = textscan(strrep(numbers, ',', ''), '%f'); 

        numericData(row, col) = numbers{1}; 

        raw{row, col} = numbers{1}; 

      end 

    catch me 

    end 

  end 

end 

  

  

%% Split data into numeric and cell columns. 

rawNumericColumns = raw(:, [1,2,3,10,11,12,14,15,17,19]); 

rawCellColumns = raw(:, [4,5,6,7,8,9,13,16,18,20,21,22]); 

  

  

%% Create output variable 

scenariosrain = raw; 

%% Clear temporary variables 

clearvars filename delimiter startRow formatSpec fileID dataArray ans raw col 

numericData rawData row regexstr result numbers invalidThousandsSeparator 

thousandsRegExp me rawNumericColumns rawCellColumns; 

  

  

num_scen=20; 

%Start Vissim 
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Vissim = actxserver('Vissim.Vissim-64.10');  

% Load network 

Vissim.LoadNet('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing 

PM\15605_PG Blvd Interchange.inpx') 

% Choose random seed 

Random_Seed = [42 57 72 90 110]; 

Driving_Behav=xlsread('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing 

PM\Driving_Behav.xlsx','A2:D10') 

DesSpeedDist8_Normal=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedD

istr(8)'); 

DesSpeedDist9_Normal=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedD

istr(9)'); 

DesSpeedDist10_Normal=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeed

Distr(10)'); 

%Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(8)',DesSpeedDis

t8_Normal) 

LinkBehavType=Vissim.Net.Links.GetMultiAttValues('LinkBehavType'); 

Normal_LinkBehavType=LinkBehavType; 

Wet_LinkBehavType=Normal_LinkBehavType; 

Snowy_LinkBehavType=Normal_LinkBehavType; 

%%%   Define various driving behaviors parameters for wet(10) and snowy (11) 

condition 

for i=1:size(LinkBehavType,1) 

  if LinkBehavType{i,2}=='3' 

    Wet_LinkBehavType{i,2}=10; 

    Snowy_LinkBehavType{i,2}=11; 

  end 

end 

  

All_Links=Vissim.Net.Links.GetAll; 

cn=0; 

%%% Read Driving Behaviors and Desired Speed Decisions 

for i=1:size(LinkBehavType,1) 

  if LinkBehavType{i,2}=='3'| LinkBehavType{i,2}=='9'; 

    cn=cn+1; 
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    Freeway_Link(cn,1)=get(All_Links{i}, 'AttValue', 'No'); 

  end 

end 

DesSpeedDec=Vissim.Net.DesSpeedDecision.GetMultiAttValues('Lane'); 

DesSpeedDist9_Wet=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedDist

r(9)'); 

DesSpeedDist10_Wet=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedDis

tr(10)'); 

DesSpeedDist9_Snowy=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedDi

str(9)'); 

DesSpeedDist10_Snowy=Vissim.Net.DesSpeedDecision.GetMultiAttValues('DesSpeedD

istr(10)'); 

Signal_Use=[NaN NaN NaN NaN]; 

Signal_Names=[10001 10002 10003 10004]; 

for i=1:size(DesSpeedDec,1) 

  Link_Lane=strsplit(char(DesSpeedDec{i,2}),'-'); 

  Link=Link_Lane{1,1}; 

  if ismember(str2num(Link),Freeway_Link)>0 

    DesSpeedDist9_Wet{i,2}='88'; 

    DesSpeedDist10_Wet{i,2}='90'; 

    DesSpeedDist9_Snowy{i,2}='89'; 

    DesSpeedDist10_Snowy{i,2}='90'; 

  end 

   

   

end 

  

scenarios_table=cell2table(scenariosrain); 

%%  

%%% Start Simulating Scenarios 

for i=1:num_scen 

    Curr_Event_Ind=0; 

    simRuns = Vissim.Net.SimulationRuns.GetAll; 

    for simRunNo = 1 : length(simRuns) 

        Vissim.Net.SimulationRuns.RemoveSimulationRun( simRuns{simRunNo} ); 

    end 
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  % Find the break point matrix and also number of crashes occuring in the 

scenario  

    curr_scen=scenarios_table(scenarios_table.scenariosrain2==i,:); 

    num_crash=sum(strcmp(curr_scen.scenariosrain4,'Incident')); 

    if num_crash>4 

      error('Error ocurred,number of crashes more than 4 for the scenario') 

    end 

    ind_crash=strcmp(curr_scen.scenariosrain4,'Incident')==1; 

    

BreakPoint_mat=sort(transpose([curr_scen.scenariosrain10(curr_scen.scenariosr

ain10>0);max(curr_scen.scenariosrain11)])); 

    BreakPoint_mat=BreakPoint_mat*60+1800; 

    CrashEnd=transpose(table2array(curr_scen(ind_crash,11))); 

    CrashEnd=CrashEnd*60+1800; 

    Crashes_Location_mat=table2array(curr_scen(ind_crash,20:22)); 

     

    %Assign each signal to a specific crash and move the signal head to the 

    %crash location, note that the location of signal head can not be 

    %modified in the middle of the simulation 

    for k=1:num_crash 

       link=str2double(Crashes_Location_mat(k,1)); 

       lane=str2double(Crashes_Location_mat(k,2)); 

       xcoordinate = str2double(Crashes_Location_mat(k,3)); 

       

set(Vissim.Net.SignalHeads.ItemByKey(Signal_Names(k)),'AttValue','Lane',strca

t(num2str(link),'-',num2str(lane))); 

       

set(Vissim.Net.SignalHeads.ItemByKey(Signal_Names(k)),'AttValue','Pos',xcoord

inate); 

       Signal_Use(k)=k; 

    end 

     

     

    % Find simulation breakpoints, simulation stops at each breakpoint;  

    %BreakPoint_Type determines if the breakpoint is for a crash end (which 

is not a new scenario) or a new scenario (crash or weather)   
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    % Breakpoints include all events start time, crash events end times, and 

the maximum of all events end time   

     

    

BreakPoint_Type=[zeros(1,size(BreakPoint_mat,2)),ones(1,size(CrashEnd,2))]; 

    BreakPoint_mat=[BreakPoint_mat,CrashEnd]; 

    BreakPoint=[BreakPoint_mat; BreakPoint_Type]; 

    [temp, order] = sort(BreakPoint(1,:)); 

    BreakPoint = BreakPoint(:,order); % Sorted breakpoints and their type 

matrix   

 for s=1:5 

   simRuns = Vissim.Net.SimulationRuns.GetAll; 

    for simRunNo = 1 : length(simRuns) 

        Vissim.Net.SimulationRuns.RemoveSimulationRun( simRuns{simRunNo} ); 

    end 

   Curr_Event_Ind=0; 

      set(Vissim.Simulation, 'AttValue', 'RandSeed', Random_Seed(s)); 

      

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(8)',DesSpeedDist

8_Normal); 

      

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(9)',DesSpeedDist

9_Normal); 

      

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(10)',DesSpeedDis

t10_Normal); 

      

Vissim.Net.Links.SetMultiAttValues('LinkBehavType',Normal_LinkBehavType)  ; 

      crash_cnt=0; 

     for j=1:size(BreakPoint,2)   

         if j==1 

           m=j+1; 

         else 

           m=j; 

         end 

          j 

          m 
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          Curr_Event_Ind 

            if BreakPoint(2,m-1)~=1 

  

               Curr_Event_Ind=Curr_Event_Ind+1 

               if curr_scen.scenariosrain10(Curr_Event_Ind)<9000 

                        if 

strcmp((curr_scen.scenariosrain4(Curr_Event_Ind)),'Weather')==1 

                             'weather' 

                             if curr_scen.scenariosrain14(Curr_Event_Ind)==1 

                                  

%Vissim.Net.Links.SetMultiAttValues('LinkBehavType',Normal_LinkBehavType) 

                                 % 

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(8)',DesSpeedDist

8_Normal) 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelOwn',Driving

_Behav(1,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc0',Driving_Beha

v(4,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc1Distr',Driving

_Behav(5,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc4',Driving_Beha

v(6,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc5',Driving_Beha

v(7,1)); 
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set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc7',Driving_Beha

v(8,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc9',Driving_Beha

v(9,1)); 

  

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelOwn',Driving

_Behav(1,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc0',Driving_Beha

v(4,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc1Distr',Driving

_Behav(5,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc4',Driving_Beha

v(6,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc5',Driving_Beha

v(7,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc7',Driving_Beha

v(8,1)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc9',Driving_Beha

v(9,1)) ;              
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Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(9)',DesSpeedDist

9_Normal); 

                                  

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(10)',DesSpeedDis

t10_Normal); 

  

                             elseif 

curr_scen.scenariosrain14(Curr_Event_Ind)==2|curr_scen.scenariosrain14(Curr_E

vent_Ind)==3|curr_scen.scenariosrain14(Curr_Event_Ind)==4 

  

                                  

%Vissim.Net.Links.SetMultiAttValues('LinkBehavType', Wet_LinkBehavType) 

                                 % 

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(8)',DesSpeedDist

8_Wet) 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelOwn',Driving

_Behav(1,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc0',Driving_Beha

v(4,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc1Distr',Driving

_Behav(5,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc4',Driving_Beha

v(6,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc5',Driving_Beha

v(7,2)); 
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set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc7',Driving_Beha

v(8,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc9',Driving_Beha

v(9,2)); 

  

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelOwn',Driving

_Behav(1,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc0',Driving_Beha

v(4,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc1Distr',Driving

_Behav(5,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc4',Driving_Beha

v(6,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc5',Driving_Beha

v(7,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc7',Driving_Beha

v(8,2)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc9',Driving_Beha

v(9,2)); 
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Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(9)',DesSpeedDist

9_Wet); 

                                  

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(10)',DesSpeedDis

t10_Wet); 

  

                             else 

  

                                  

%Vissim.Net.Links.SetMultiAttValues('LinkBehavType', Snowy_LinkBehavType) 

                               %   

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(8)',DesSpeedDist

8_Snowy) 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelOwn',Driving

_Behav(1,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc0',Driving_Beha

v(4,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc1Distr',Driving

_Behav(5,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc4',Driving_Beha

v(6,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc5',Driving_Beha

v(7,3)); 
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set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc7',Driving_Beha

v(8,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(3),'AttValue','W99cc9',Driving_Beha

v(9,3)) ;          

  

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelOwn',Driving

_Behav(1,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','AccDecelTrail',Drivi

ng_Behav(2,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','SafDistFactLnChg',Dr

iving_Behav(3,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc0',Driving_Beha

v(4,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc1Distr',Driving

_Behav(5,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc4',Driving_Beha

v(6,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc5',Driving_Beha

v(7,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc7',Driving_Beha

v(8,3)); 

                                  

set(Vissim.Net.DrivingBehaviors.ItemByKey(7),'AttValue','W99cc9',Driving_Beha

v(9,3)) ;          
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Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(9)',DesSpeedDist

9_Snowy); 

                                  

Vissim.Net.DesSpeedDecision.SetMultiAttValues('DesSpeedDistr(10)',DesSpeedDis

t10_Snowy); 

  

                             end 

  

  

                           end 

  

                if 

strcmp((curr_scen.scenariosrain4(Curr_Event_Ind)),'Incident') 

                       crash_cnt=crash_cnt+1 

                       Curr_Signal=Signal_Names(crash_cnt); 

                       %Incident_start= 

curr_scen.scenariosrain10(Curr_Event_Ind)*60 

                       

%Incident_end=curr_scen.scenariosrain11(Curr_Event_Ind)*60 

                       

%link=str2double(curr_scen.scenariosrain20(Curr_Event_Ind)) 

                       

%lane=str2double(curr_scen.scenariosrain21(Curr_Event_Ind)) 

                       %xcoordinate = 

str2double(curr_scen.scenariosrain22(Curr_Event_Ind)) 

                       

%set(Vissim.Net.SignalHeads.ItemByKey(Curr_Signal),'AttValue','Lane',strcat(n

um2str(link),'-',num2str(lane))) 

                       

%set(Vissim.Net.SignalHeads.ItemByKey(Curr_Signal),'AttValue','Pos',xcoordina

te) 

                       SignalController = 

Vissim.Net.SignalControllers.ItemByKey(Curr_Signal)   ; 

                       SignalGroup = SignalController.SGs.ItemByKey(1); 

                       set(SignalGroup, 'AttValue', 'SigState', 'RED')             

;        
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                   end 

                set(Vissim.Simulation, 'AttValue', 'SimBreakAt', 

BreakPoint(1,j)); 

                Vissim.Simulation.RunContinuous; 

  

               end  

            else 

              'crash end' 

            % find which crash needs to be removed from the network 

            Curr_Crash_End=find(BreakPoint(1,j-1)==CrashEnd) ; 

            % find the index of signal associated with this crash 

            %Curr_Signal_End_Ind=find(Signal_Use==Curr_Crash_End) 

            %Curr_Signal_End=Signal_Names(Curr_Signal_End_Ind) 

            Curr_Signal_End=Signal_Names(Curr_Crash_End); 

            SignalController = 

Vissim.Net.SignalControllers.ItemByKey(Curr_Signal_End) ;   

            SignalGroup = SignalController.SGs.ItemByKey(1); 

            set(SignalGroup, 'AttValue', 'SigState', 'OFF')  ; 

            set(Vissim.Simulation, 'AttValue', 'SimBreakAt', 

BreakPoint(1,j)); 

            Vissim.Simulation.RunContinuous; 

           end 

       end 

     newname=strcat('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing 

PM\direct 

output2\',sprintf('scenario_%d.rsr',i),sprintf('_seed%d.csv',Random_Seed(s))) 

     movefile('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM Traffic 

Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing PM\direct 

output\15605_PG Blvd Interchange_001.rsr',newname) 

     for k=1:8 

            

Data_Collection_No=Vissim.Net.DataCollectionMeasurements.GetMultiAttValues('N

o') 

            DC_measurement = 

Vissim.Net.DataCollectionMeasurements.ItemByKey(Data_Collection_No{k,2}) 

            for l=1:30 
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              Volume(l,k)=get(DC_measurement, 'AttValue', 

strcat('Vehs(1,',sprintf('%d',l),',All)')) 

              Occupancy(l,k)=get(DC_measurement, 'AttValue', 

strcat('OccupRate(1,',sprintf('%d',l),',All)')) 

              Speed(l,k)=get(DC_measurement, 'AttValue', 

strcat('SpeedAvgArith(1,',sprintf('%d',l),',All)')) 

              SpeedHarm(l,k)=get(DC_measurement, 'AttValue', 

strcat('SpeedAvgHarm(1,',sprintf('%d',l),',All)')) 

            end 

     end 

     xlswrite(strcat('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing PM\data 

collection2\',sprintf('scenario_Vol%d',i),sprintf('_seed%d.csv',Random_Seed(s

))),Volume) 

     xlswrite(strcat('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing PM\data 

collection2\',sprintf('scenario_Occup%d',i),sprintf('_seed%d.csv',Random_Seed

(s))),Occupancy) 

     xlswrite(strcat('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing PM\data 

collection2\',sprintf('scenario_Speed%d',i),sprintf('_seed%d.csv',Random_Seed

(s))),Speed) 

     xlswrite(strcat('C:\Users\Nima\Desktop\Sharp2\pilot vissim model\VISSIM 

Traffic Model_16MAR18 (2)\VISSIM Traffic Model_16MAR18\2017 Existing PM\data 

collection2\',sprintf('scenario_SpeedHarm%d',i),sprintf('_seed%d.csv',Random_

Seed(s))),SpeedHarm) 

  end 

end 

 

 


